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The prediction of contaminant transport in porous media requires the compu-
tation of the ¯ow velocity. This work presents a methodology for high-accuracy
computation of ¯ow in a heterogeneous isotropic formation, employing a dual-
¯ow formulation and adaptive gridding. The dual equations, describing the
hydraulic head and the streamfunction, are numerically solved through ®nite
element approximations. The application of classic ®nite-element methods re-
quires a rather large number of nodes to represent suitably the ¯ow in high-
contrast formations. We present a mesh-adaptive approach that enhances the
accuracy of the numerical ¯ow solution for a given computational e�ort. We rely
on an a posteriori error estimator to identify areas where re®nements of the ®nite
element mesh are needed or unre®nements are acceptable. We also demonstrate
through numerical experiments that the developed methodology e�ciently en-
hances accuracy through successive mesh adaptation. Ó 1999 Elsevier Science
Ltd. All rights reserved

1 INTRODUCTION

Numerical simulation models are routinely used in
hydrogeologic investigations. Many of these models
employ ®nite-element approximations, which are ¯exible
in describing complicated geometries and intricate
physical phenomena. Finite element methods have been
frequently applied to solve groundwater ¯ow and
transport problems1±10.

One of the challenges of quantitative hydrogeology is
the modelling of single-phase fully saturated ¯ow in
highly heterogeneous formations. The ¯ow in such for-
mations tends to channel into preferential ¯ow paths11,12

and, in the case of very large conductivity variation, the
¯ow regime resembles a network13. The error associated
with numerical simulation of such ¯ows using coarse
grids has been shown to be quite signi®cant3,12. The ®ner
the grid, the smaller the truncation error and, to prevent
numerical dispersion, the grid size should be about the
inverse of the gradient of the logarithm of trans-
missivity14.

When using ®nite element methods, the hydraulic
potential, /, is usually ®rst computed; then, the velocity
is calculated through application of Darcy's law and the
streamlines are drawn through tracing of ¯ow particles.
It was demonstrated by Frind and Matanga3 that such a
procedure is error prone, because the streamlines are
computed with lower accuracy than the equipotentials
(lines of constant hydraulic head). Also, it is physically
required that ¯uxes across element edges should be
conforming, but this physical feature cannot be guar-
anteed with the application of Darcy's law, which leads
to a constant velocity for each element when linear ®nite
elements are employed. On this topic, some mixed ®nite
element methods or mixed-hybrid ®nite element meth-
ods have been proposed15,7,16±18. Frind and Matanga3

presented a ``dual ¯ow'' formulation in the study of
groundwater ¯ow in heterogeneous aquifers. That is, the
hydraulic head and the steamfunction are computed
separately and with similar accuracy. This approach has
been shown19,20 to yield accurate predictions of advec-
tive transport and mixing.

The ``dual ¯ow'' formulation leads to a set of two
Laplace-like equations. Solving such equations is still a
challenging problem especially for highly heterogeneous
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media. Borcea and Papanicolaou12 have shown that
obtaining an accurate numerical solution of second-or-
der elliptic problems with large contrast in the coe�-
cients is not an easy task. However, an accurate
description of the velocity ®eld is a prerequisite for a
realistic analysis of the advective±dispersive±reactive
contaminant transport processes21,22. In mixing-limited
reactions, the use of inaccurate velocity causes miscal-
culation of the rate of mixing and thus the rate of
chemical reactions, as shown by Cirpka et al.21. Ne-
glecting spatial variability may be inappropriate when
heterogeneity has strong in¯uence on mixing. Thus, one
must include heterogeneity in the numerical simulation
and use algorithms that are accurate enough to preserve
the e�ects of heterogeneity. If one uses uniform ®nite
element meshes, many nodes are required in order to
capture the high-¯ow zones. However, the ¯ow rate in
most of the domain is slow and can be represented ad-
equately with a lower density of nodes. Thus, using ®ne
uniform grids results in ine�cient use of computational
resources.

Employing an a posteriori error estimator, this work
extends the approach of Frind and Matanga3 to use
nonuniform adaptively selected grids, on which error is
®rst distributed more uniformly and then the error
magnitude is further globally reduced as much as
needed. This new mathematical approach strikes a sat-
isfactory balance between solution accuracy and com-
putational e�ciency. We start by obtaining the solution
for a relatively coarse regular mesh; then, using a higher
order approximation, we estimate the error distribution.
This error distribution serves as a guide to adjust the
granularity of the grid.

Mesh adaptive procedures can be classi®ed into two
broad categories. The ®rst approach considers the ex-
isting topology as heritable; that is, local re®nement/
unre®nement is implemented on the basis of the pre-
vious discretization23±25. The other approach generates/
adapts meshes relying on a certain de®ned metric, the
previous connectivity being broken when regenerating a
grid26,27. In our application, the higher ¯ow rate areas
are more and more clearly discovered by a series of mesh
adaptations. Our procedure starts from a fairly coarse
initial mesh that sequentially evolves. During the mesh
evolution, we basically adopt a hierarchical-style local
re®nement scheme that bisects the longest edge of the
triangle of interest. This method was originally proposed
by Rivara 28 and is now developed by using e�cient
edge-swapping techniques to make mesh quality even
better. Also, we incorporate into our mesh adaptive al-
gorithm an auxiliary unre®nement tool that can delete
unnecessary previously set points. An optional node-
moving process can further improve the grid. Using this
automated mesh adaptive procedure, the practical con-
sequences are that high-¯ow areas require re®nement
and low-¯ow areas may be coarsened, depending on
how much accuracy is required. Thus, the quality of the

resulting ¯ow solution is ensured while the overall pro-
cessing time is signi®cantly reduced.

This work also presents numerical simulations that
illustrate the error that an inadequate grid may intro-
duce on the computed ¯ow regime in a heterogeneous
domain. Our numerical experiments demonstrate that
the a posteriori error estimate analysis guides the mesh
adaptation algorithm to produce a high-quality grid for
the accurate groundwater ¯ow simulation in highly
heterogeneous aquifers, without increasing signi®cantly
the total computational cost. The results in this study
warn hydrogeologists against the use of coarse or slop-
pily selected grids in heterogeneous formations and
provide insights that may assist practitioners in selecting
a better grid.

2 MATHEMATICAL MODELING

Consider steady ¯ow without sources or sinks
throughout a square domain X (see Fig. 1). This ¯ow
domain and the boundary conditions are used for il-
lustration of the methodology. Assuming that the
transmissivity is isotropic, the ¯ow equation solution
can be obtained in terms of streamfunction and hy-
draulic potential (head), utilizing the approach known
as ``dual ¯ow'' formulation 3.

The mathematical ¯ow model comprises two uncou-
pled equations: one describes /, the hydraulic head:

r�Kr/� � 0 in X �1�
and the other describes w, the streamfunction:

r 1

K
rw

� �
� 0 in X; �2�

Fig. 1. Computational domain.
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where K is the hydraulic conductivity (or transmissivity,
for Dupuit±Forchheimer ¯ows).

For eqn (1), use Dirichlet conditions along the left
and right boundaries of the domain, Lleft and Lright:

/ � /1 on Lleft; / � /2 on Lright �3�
and the homogeneous Neumann (no-¯ux) condition
along top and bottom:

o/
on
� 0 on Ltop [ Lbottom: �4�

In eqn (4), o=on signi®es the derivative along the out-
wards normal vector at the boundary.

The solution of the hydraulic potential problem (1),
along with boundary conditions (3) and (4), provides the
values of the potential at each node. Then, the Darcy
¯ux (discharge per unit area of porous medium), which
is also called ``speci®c discharge'', is de®ned as a vector
function:

q~� �qx; qy�t � ÿ K
o/
ox
;ÿK

o/
oy

� �t

: �5�
We calculate the ¯ux across either Lleft or Lright by inte-
grating the horizontal speci®c discharge component
along the height of the square domain:

Dw �
Z top

bottom

qx�y� dy �6�
Thus, the boundary conditions set for eqn (2) are spec-
i®ed as:

w � 0 on Lbottom; w � Dw on Ltop �7�
and

ow
on
� 0 Lleft [ Lright: �8�

In the application that will be described later, to il-
lustrate the method, the actual conductivity K is re-
solved at a scale smaller than that of the elements. In the
implementation of the ®nite element method, the con-
ductivity in each triangle s is set uniform and equal to
the geometric mean of the actual conductivity within the
triangle. The geometric mean conductivity is supposed
to represent the e�ective conductivity of an element. The
problem of conductivity upscaling is reviewed in Ref.29.

From eqn (5), the velocity can be obtained by using

u~� q~
h

�9�
with h denoting the porosity of the medium. Note that
one might have used eqn (9) to trace streamlines, thus
obtaining a streamfunction distribution. However, the
velocity is constant within each ®nite element, yielding
only an elementwise streamfunction value distribution.
This approximation does not guarantee the accuracy of
streamline tracing15,17,18. To circumvent this obstacle,
we adopt the dual ¯ow formulation that can accurately
compute both streamlines and equipotentials. We will
show later in this paper that the numerical solutions in
terms of equipotential lines and streamlines resulting

from dual ¯ow models are exactly orthogonal every-
where.

3 FINITE ELEMENT DISCRETIZATION

The equipotential equation (1) and the streamfunction
equation (2) are similar elliptic equations. The same ®-
nite element algorithm is used to solve ®rst eqn (1) and
then eqn (2). We will use the streamfunction equation
(2) to describe the method.

De®ne the following discrete space:

H 1
h � qhjqh 2 C0�X�; qhjs 2 P1; 8s 2 Xh

� 	
; �10�

where Xh is the standard triangulation of the computa-
tional domain X; s is a generic element in X; C0�X�
represents the space of functions that are continuous on
X; h � maxs2Xh hs is a measure of the granularity of the
triangulation Xh; and P1 is the space of linear polyno-
mials.

A second discrete space is de®ned as

H 1
hg
� qh jqh 2 H 1

h ; qh jC � g
� 	

; �11�
where C indicates the boundary of the domain and g the
value that the function qh assumes along this boundary.

In words, H 1
h represents the ensemble of the contin-

uous polynomials, de®ned over the discretized domain,
and H 1

hg
the sub-ensemble of the polynomials belonging

to H 1
h that satisfy given boundary conditions.

The discrete variational formulation corresponding
to eqn (2) can be expressed as follows:

Find wl 2 H 1
hg

such that:X
s2T

1

K

Z
s
rwl � rv ds � 0 8v 2 H 1

h0
�12�

The contribution to the global integral coming from
each triangle s in the triangulation T , is given by

Aswls � 0; �13�
where As is a 3� 3 symmetric and positive de®nite
matrix associated with the element s, and wls is a 3� 1
vector corresponding to the three vertices of s. Thus, the
assembly of all contributions of elementwise matrices
and right-hand-sides leads to the following global ma-
trix equation:

Awl � 0: �14�
Here, A is an NV � NV symmetric and positive de®nite
matrix (NV is the total number of nodes on the mesh),
while wl is an NV � 1 vector containing the value of the
streamfunction at all triangulation nodes.

The system (14) has a unique solution, and the clas-
sical conjugate gradient algorithm can be applied to
solve this system (see, for example, Ref.30 for details).
We also use the ``mass lumping'' technique as precon-
ditioner31 which accelerates the convergence of the
conjugate gradient algorithm.
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4 A POSTERIORI ERROR ESTIMATE

The a posteriori error estimate approach was introduced
by Babu�ska for general problems32; results of theoretical
research on a posteriori error estimates for elliptic
equations can be found also in Refs.33,34. Here, we will
adapt these results to the problem of computing the
streamfunction (the same procedure being followed with
the potential).

Consider that the piecewise linear solution, wl 2 H 1
hg

,
is now available satisfyingX

s2T

1

K

Z
s
rwl � rv ds � 0 8v 2 H 1

h0
: �15�

We de®ne the error as

e � wÿ wl; �16�
Since we solve the streamfunction problem using linear
elements, the local approximation of e should be given
in terms of at least piecewise quadratic ®nite element
basis functions. We will use here the discrete space Bs,
de®ned over each triangle s and consisting of a set of
quadratic polynomials vanishing at each one of the three
vertices.

Inspired by the approach of Bank33, we obtain using
Green's formula from eqn (1) the following local (within
each s) Neumann problem:

Find es 2 Bs

such that:Z
s
res � rw ds � ÿ

Z
s
rwl;s � rw ds

�
Z

os

1

2

o
on
�wl;s � wl;neighbor� �

o
on
�es � eneighbor�

� �
w ds

8w 2 Bs; �17�
where the index `neighbor' denotes all the triangles
surrounding the triangle s (see Fig. 2).

Obviously, the above equation cannot be solved be-
cause it contains the unknown term

R
os

1
2

o
on �es �

eneighbor�w ds on the right-hand side. We drop this term
and reduce eqn (17) into the following a posteriori error
estimate criterion:

Find ~es 2 Bs

such that:

Z
s
r~es � rw ds � ÿ

Z
s
rwl;s � rw ds

�
Z

os

1

2

o
on

wl;s � wl;neighbor

ÿ �
w ds 8w 2 Bs �18�

This is a local Neumann problem, involving the error
estimate at the middle point of the three edges of the
triangle s. Thus, for each triangle s, the system (18) leads
to a 3� 3 matrix equation. Since the matrix resulting
from

R
sr~es � rw ds is symmetric and positive de®nite,

the uniqueness of the solution is ensured. Note that the
hydraulic conductivity coe�cient, K, does not appear in
eqns (17) and (18) because in this study K is constant
within each triangle s.

The a posteriori error estimate can be used to com-
pute both local and global ``energy norms'' as follows:

jjj~ejjj2s �
1

K

Z
s
r~es � r~es ds �19�

jjj~ejjj2T �
X
s2T

1

K

Z
s
r~es � r~es ds: �20�

The local energy norm (19) serves as error index for each
triangle s, suggesting whether to modify s. In fact,
Bank33 has mathematically proved that, measured by
the above energy norms (19) and (20), the actual error e
(de®ned by eqn (16)) and the a posteriori error estimate ~e
(resulting from solving eqn (18)) are equivalent. Guided
by this index, we can approximately equi-distribute the
error over the mesh through simultaneous re®nement/
unre®nement operations; ®nally, we can make this uni-
formly distributed error value as small as required
through further re®nement sweeps. The overall quality
of each mesh can be measured by the global energy
norm of the error eqn (20).

5 ADAPTIVE MESH PROCEDURES

Based on the a posteriori error estimate, we adapt the
mesh through bisection re®nements, unre®nements, edge
swaps, and node moving. These mesh adaptation pro-
cedures produce a triangulation on which granularity
varies gradually, improving its geometric quality and
reducing the error related to the discretization.

For illustration, consider that triangle s1 in Fig. 3(a)
is selected for re®nement because it has the biggest local
energy norm of the error expressed by eqn (19). The s1

triangle is bisected by the median line to its longest edge.
This re®nement procedure, originally suggested by Ri-
vara28, is called longest-edge bisection. Following this
bisection, we should also re®ne s2, the triangle sharing
the bisected edge with s1. If the bisected edge happens to
be the longest edge in s2, the local re®nement process
can stop. In our example, the re®nement of s2 that is
shown in Fig. 3(b) violates the longest-edge bisection
rule, since the common edge of s1 and s2 is not the
longest one in the triangle s2.Fig. 2. s and its three neighbors.
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We recursively re®ne elements, i.e., we will continue
to bisect the longest edge of each triangle until the
common edge of two neighboring elements to be re®ned
is the longest for both. This process typically consists of
a few steps. In our case, it just takes two steps, resulting
in the triangulation shown in Fig. 3(c), which is unfor-
tunately non-conforming. We supplement re®nements,
producing s22 and s23 in Fig. 3(d), to make the trian-
gulation conforming as shown in Fig. 3(d).

The mesh quality of the re®ned triangulation, shown
in Fig. 3(d), can be further improved by local edge
swaps. We implement edge-swap loops only for newly-
re®ned elements. That is, we identify its longest edge and
the neighboring element that shares this edge; using
criteria such as the geometric quality of the involved
triangles or, again, the a posteriori error estimate, we
compare the existing pattern and another pattern with
common edge swapped, and we select the better pattern.
Through local edge swaps, the ®nal triangulation,
shown in Fig. 3(e), looks nicer than the one presented in
Fig. 3(d).

Note that the geometric quality of a triangle s is
quanti®ed using the metric 4

���
3
p jsj=Pi�1;3 h2

i , where jsj
and hi�i � 1; 3� are the area and the three sides of the
triangle s; this quality index reaches 1, its maximum
value, when s is an equilateral triangle.

In this work, we coarsen the mesh by deleting nodes
located in regions characterized by the smallest errors.
At ®rst, we transform the elementwise constant error
estimate distribution into a new distribution, in which
the error estimate is distributed among nodes. This
transformation is achieved by assigning to each vertex
the average of the errors of the surrounding triangles.
Then, we start our unre®nement process from the ver-
tices with the smallest error indices.

For example, in Fig. 4(a), we have selected to elimi-
nate node vi. First, we reduce the surrounding triangles
number from six to four, by successively swapping edges

among the existing six elements. Unre®nement is guided
preferably by the criterion of geometric quality; it yields
an intermediate swapped triangulation as shown in
Fig. 4(b). In this case, we can remove the node vi, ob-
taining a quadrilateral ``hole''-pattern as illustrated in
Fig. 4(c). To divide the quadrilateral hole, making a
conforming triangulation, we have two possible con-
necting choices; obviously, the subdivision shown in
Fig. 4(d) is more acceptable based on a priori geometric
criterion.

Our mesh moving algorithm can be guided by either
geometric quality or a posteriori error estimate criterion,
although in a slightly di�erent fashion. In this algo-
rithm, the mesh connectivity remains ®xed, but the lo-
cations of mesh points can be changed to satisfy
requirements of geometric quality or error estimate. Our
procedure consists of a Gauss±Seidel-like iteration on
the vertices of the mesh, in which the position of each
vertex is locally optimized with all the other vertices kept
®xed. The procedure is illustrated in Fig. 5, where the
position of the vertex vi is optimized within the region
Xvi by the approximate optimization of the geometric
quality or the approximate minimization of the a pos-
teriori error estimate as function of the vertex location.
Each optimization problem has two degrees of freedom,
and it is solved using a simple approximate Newton it-
eration scheme. Details about this algorithm can be
found in Ref.35. Notice that not all the vertices in the
mesh can be moved. Some boundary and interface ver-
tices must remain ®xed to preserve the de®nition of the
region; other vertices are characterized by only one de-
gree of freedom.

Fig. 4. Unre®nement example.

Fig. 5. The subregion Xvi associated with vertex vi.

Fig. 3. Re®nement example.
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6 NUMERICAL EXPERIMENT

We present the numerical simulation of groundwater
¯ow in a 1 m� 1 m square domain. The logarithm of
conductivity (i.e., the logarithm of the hydraulic con-
ductivity) is a sample from a random function that is
stationary and normally distributed with Gaussian co-
variance function:

R�hx; hy� � r2

�����������������������������������
hx

lx

� �2

� hy

ly

� �2
s

; �21�

where R is the covariance at distance hx in the horizontal
direction and hy in the vertical direction. The conduc-
tivity is measured in units of m/s. The mean of logarithm
of conductivity is ÿ9:21, the variance r2 is 2, and the
length parameters lx and ly are 0.1 and 0.01 m, respec-
tively. The sample was generated using a procedure
developed by Dykaar et al.36±40. We generate a hy-
draulic conductivity background over a 3 m� 3 m
square domain, which is represented by 1025� 1025
points (that is, the length, 3 m, and the height, 3 m, are
divided into 210 units, respectively); then, we retain the
central 1 m� 1 m subdomain which is one-ninth of the
total area. The resulting hydraulic conductivity ®eld is
thus periodicity-free. The sample hydraulic conductivity
has ln�Kmax� � ÿ4:046 and ln�Kmin� � ÿ14:04.

At ®rst, we generated a regular coarse triangulation
on which the unit length is 0.05 m in the x and y di-
rections. The conductivity, shown in Fig. 6, has
ln�Kmax � ÿ5:404 and ln�Kmin� � ÿ13:13. The com-
puted streamlines are shown in Fig. 7 and the a posterior

error estimates for the streamfunction are shown in
Fig. 8, indicating that the initial mesh is inadequate.

Then, based on the a posteriori error estimate, we
successively add points, setting the target number of
nodes, NVtarget, ®rst at 1000 and then at 2000. The two
re®ned meshes have 1000 nodes and 1916 elements
(Fig. 9) and 2000 nodes and 3865 elements (Fig. 10),
respectively. We emphasize that, on these adapted
meshes, the grid is highly nonuniform in node density,
with higher density in higher conductivity areas.

Fig. 11 shows the mesh resulting from a further mesh
improvement, realized through simultaneous re®ne-
ments/unre®nements, with NVtarget � 3000. Points locat-
ed in lower conductivity regions are progressively
deleted, while the node density in higher conductivity
areas increases further. This grid, characterized by 3000
nodes and 5857 elements, has no similarity to the orig-
inal uniform mesh. The channeling of ¯ow in preferen-
tial ¯ow paths illustrated on Fig. 12 is much more
pronounced than computed in the original coarse uni-
form grid (see Fig. 7).

However, some streamlines appear rippled. Also,
note that the maximum hydraulic conductivity value
captured by this third adapted mesh is ln�Kmax �
ÿ4:056 (see Fig. 13) while we are expecting it to reach
ÿ4:046. By re®ning the grid even further, the accuracy
of the computed streamlines can be improved even
further. The operation of simultaneous re®nement/un-
re®nement is carried out once more, yielding the mesh
with 4000 nodes and 7848 triangles as shown in Fig. 14.
Another further mesh re®nement produces a grid con-

Fig. 6. ln(K) associated with initial mesh.
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taining 5000 points and 9845 elements (see Fig. 15). We
use this latest mesh as ®nal adapted grid, because the
maximum expected hydraulic conductivity values:

ln�Kmax� � ÿ4:046, is captured (see Fig. 16). The most
striking feature of this mesh is that most nodes are
concentrated in the high hydraulic conductivity regions

Fig. 7. Streamlines associated with the initial mesh (the discharge passing between two consecutive plotted streamlines is 0.05 if the
total discharge is regarded as 1).

Fig. 8. Local error ``energy norm'' distribution associated with initial mesh.
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Fig. 9. The ®rst adapted mesh (NV� 1000, NT� 1916).

Fig. 10. The second adapted mesh (NV� 2000, NT� 3865).
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Fig. 11. The third adapted mesh (NV� 3000, NT� 5857).

Fig. 12. Streamlines associated with the third adapted mesh (the discharge passing between two consecutive plotted streamlines is
0.05 if the total discharge is regarded as 1).
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where the ¯ow rate is the highest. Fig. 17 shows the
¯ownet associated with the ®fth adaptive grid. On this
mesh, the channeling of streamline pattern is even more
pronounced while the smoothness of streamlines in these

sensitive areas looks better than in Fig. 12 characterized
by 3000 nodes; meanwhile, the orthogonality of
streamlines to equipotential lines is ensured in this nu-
merical experiment. The associated a posteriori error

Fig. 14. The fourth adapted mesh (NV� 4000, NT� 7848).

Fig. 13. ln(K) associated with the third adapted mesh.
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estimate distribution, illustrated in Fig. 18, is almost six
orders of magnitude smaller than the original one.

We also analyzed the results to look for the rela-
tionship between the density of nodes and the value of

the mean speci®c discharge module (see eqn (5) for the
de®nition of the speci®c discharge vector). We divide the
1 m� 1 m square into 100 0:1 m� 0:1 m subsquares,
calculating the mean speci®c discharge module value of

Fig. 15. The ®fth adapted mesh (NV� 5000, NT� 9845).

Fig. 16. ln(K) associated with the ®fth adapted mesh.
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each block and counting the number of nodes occupied
in the block. The resulting 100 sampled data are plotted
in Fig. 19. The ®gure shows clearly that lower velocities
are found in a larger part of the area and a bigger node

density is essential to describe the zones with higher
velocities. In Fig. 20, we have plotted j�Kmax�numÿ
�Kmax�actualj=�Kmax�actual�100% as a function of the
number of nodes. As we can see, the more adapted the

Fig. 18. Local error ``energy norm'' distribution associated with the ®fth adapted mesh.

Fig. 17. Flownet associated with the ®fth adapted mesh (the discharge passing between two consecutive plotted streamlines is 0.05 if
the total discharge is regarded as 1).
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mesh, the closer the maximum conductivity value is to
the theoretical one, showing that ®ner meshes tend to
resolve better the actual maximum hydraulic conduc-
tivity of the formation.

In the present work, every re®nement/unre®nement
process is followed by a node-moving adjustment that
improves the mesh quality. Also, note that the solution
of eqns (1) and (2) is required whenever a new adaptive
mesh is generated, because our a posteriori error esti-
mate is computed on the basis of the updated ®nite el-
ement solution.

For comparison purposes, we have additionally
generated a very ®ne uniform mesh on which the unit
length is 0.01 m in both x and y directions. This ®ne
reference grid uses 10 201 nodes and 20 000 elements.
The corresponding ®nite element solution for the
streamfunction is shown in Fig. 21. Although the grid is
quite ®ne, it is not su�cient to resolve the high con-
ductivity areas (the maximum triangle conductivity is
only ln�Kmax� � ÿ4:11�. More importantly, the degree

of channeling is underestimated and the streamlines are
more uniformly distributed than those on the adaptively
selected nonuniform grid with almost half the number of
nodes. The a posteriori error estimate distribution as-
sociated with this reference mesh is illustrated in Fig. 22,
indicating the poor error-reducing ability of such a
uniform ®ne mesh though twice more nodes are used
compared to our ®nal adapted mesh.

7 CONCLUDING REMARKS

The accurate simulation of ¯ow is an integral part of the
successful simulation of solute transport in heteroge-
neous formations. Of course, the accurate representa-
tion of ¯ow is a multifaceted problem involving site
characterization, proper scaling, and numerical analysis.
This work focuses on numerical modeling, especially the
choice of a proper ®nite-element grid. In heterogeneous
formations, the streamlines computed through a coarse
regular grid may be signi®cantly o�. For example,
compare the streamlines in Fig. 7 with the streamlines
computed using a much ®ner regular grid with 10 201
nodes (Fig. 21) or an adaptively designed nonuniform
grid with only 5000 nodes (Fig. 17). The streamlines
from the coarse grid tend to miss the channeling of ¯ow
in preferential ¯ow paths. The di�culty with ®ne meshes
is the high computational cost, which generally increases
faster than the square of the number of nodes.

Finite element mesh adaptivity guided by a posteriori
error estimate analysis can enhance the accuracy of
numerical groundwater-¯ow simulation with moderate
increase in cost. Nodes are distributed unevenly, so that
the density is higher where needed. The ®nal adaptive
grid re¯ects the contrasts in the conductivity distribu-
tion. Node density is generally higher in areas with
larger hydraulic conductivity and faster ¯ow. Mesh ad-
aptation is carried out automatically.

Even though a certain number of mesh adaptive
processes are involved in the computation, the CPU
percentage used for the grid optimization remains less
than 20%. Compared with the uniform ®ne-grid mesh
employed for comparison purposes in this work, the
total CPU time associated with our adaptive procedure
is just about 15% longer. That is, the total CPU time for
the adaptively computed streamlines in Fig. 17 is about
the same with the total CPU time for the streamlines of
the regular ®ne-grid mesh in Fig. 21. However, the result
of the adaptive approach describes the groundwater
¯ow de®nitely better.

The methodology presented in this paper can be ex-
tended to three-dimensional simulation. The a posteriori
error estimate analysis applies in the three-dimensional
case as it applies in two-dimensional ¯ow. However, the
three-dimensional ®nite element mesh adaptation would
be a new algorithmic development. Compared to two-
dimensional mesh adaptive algorithm, the adjacent

Fig. 19. Relationship between speci®c discharge module mean
value distribution and node number distribution on the ®fth
adapted mesh (statistics on 100 equally-divided squares of

0.1 m � 0.1 m).

Fig. 20. Evolution of e�ciency of Kmax-capturing during suc-
cessive mesh adaptations.
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elements (for example, tetrahedrons) share not only
sides but also faces, which requires additional data
structures to record the enriched relationships between

neighboring three-dimensional ®nite-elements. Al-
though the code that combines three-dimensional ®nite-
element mesh adaptation with a posteriori error esti-

Fig. 22. Local error ``energy norm'' distribution associated with the reference mesh.

Fig. 21. Streamlines associated with the reference mesh (the discharge passing between two consecutive plotted streamlines is 0.05 if
the total discharge is regarded as 1).
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mator could be more complicated than the current two-
dimensional model, the extension of the approach to
three-dimensional analysis is promising.
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